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ABSTRACT 

The performance of a direction of arrival estimation procedure at low signal- 

to-noise ratios and limited data samples is an important characteristic. The approach 

based on maximum likelihood (ML) estimation is considered to be among the best for 

this problem as long as the underlying signal model is properly chosen. Unfortunately, in 

most cases, there is no closed-form solution so fast search procedures are employed. Given 

no a priori knowledge, selecting the initial parameter values for these search procedures 

can be a difficult problem, especially under low signal-to-noise conditions. In this paper, 

a new method for uniform linear sensor arrays which overcomes the initial value problem 

is introduced. This method is called Balanced Data Focusing (BDF). Simulation results 

are included comparing the performance of this new method to that of the ML approach 

using the Alternating Projection Maximization search procedure and another popular 

estimation approach, the root-MUSIC method. 

RESUME 

La performance des techniques permettant l'estimation de l'angle d'arrive d'un 

signal en presence d'un faible rapport signal sur bruit et d'un nombre limite d'echantillons 

est une characteristique importante. L'approche se fondant sur l'estimation ä maximum de 

vraisemblance (ML) est considered comme l'une des meilleurs repondant a cette exigence 

en autant que le modele soit adequatement choisi. Malheureusement, dans la plupart des 

cas, une solution abregee n'existe pas de sorte que des procedures rapides de recherche sont 

employees. Sans information a priori, choisir les valeurs initiales des parametres pour ces 

procedures de recherche peuvent s'averer un probleme difficile, specialement dans le cas ou 

on a ä faire ä des conditions de rapports signal sur bruit particulierement bas. Le present 

rapport introduit une nouvelle methode qui s'applique a un reseau lineaire d'antennes 

uniformement reparties. Cette methode, appelee BDF, surmonte le probleme du choix 

des valeurs initiales. Les resultats des simulations comprises dans ce rapport comparent 

les performances de cette nouvelle methode ä celles de deux autres methodes populaires: 

la methode ML employant la procedure de recherche fondee sur la maximization des 

projections alternees ainsi qu'ä la methode root-MUSIC. 
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EXECUTIVE SUMMARY 

The accuracy of a direction of arrival estimation procedure in the presence of 

noise is an important characteristic, especially at low signal to noise ratios. Although nu- 

merous approaches have been proposed [1] - [5], those based on maximum likelihood (ML) 

estimation are considered to achieve the best performance [6] assuming the underlying 

signal model is properly chosen. 

The idea behind the ML approach is relatively simple. Using an appropriate 

model of the signal environment, synthetic data can be generated and compared to the 

observed data. The maximum likelihood parameter estimates are taken as the values 

of the model parameters for which the synthetic data best fits (in the statistical sense) 

the observed data. Despite the simplicity of this idea, the actual derivation of the ML 

approach for a particular problem can often be very complex depending on the nature of 

the model and the measured data available. 

For the bearing estimation problem, the deterministic maximum likelihood (DML) 

method has been shown to achieve good performance. The main difiiculty with this 

method is that it requires an M dimensional search where M is the number of signal 

bearings to be estimated. A number of iterative algorithms have been developed to speed 

up the search process compared to a brute force search. In general, these algorithms ei- 

ther suffer from a requirement for good initial bearing estimates (without which they may 

converge to the wrong solution), or their convergence time is still too slow to be practical. 

To overcome these problems a new algorithm has been developed called Balanced 

Data Focusing (BDF). Rather than adjust a model to fit the data, this method adjusts 

the data until it represents a valid form of model data. The bearings can then be easily 

calculated from the data using a linear interpolation method (similar to linear prediction 

methods). The advantage is that initial bearing estimates are not required, and this is 

accomplished without sacrificing convergence speed compared to other approaches. The 

main restriction is that the sensor array is required to be linear with uniform spacing 

between sensors. 

In simulations the BDF algorithm was compared to the deterministic ML method 

and the root-MUSIC algorithm (an alternate DF estimation approach which has received 

considerable attention in the open literature). It was found that the BDF method per- 

formed as well as the deterministic ML approach and outperformed root-MUSIC in terms 

of both accuracy and threshold performance. The BDF method is, however, slower than 



root-MUSIC, especially as the number of signals increases. Further research into better 

search algorithms (compared to the gradient descent technique used) would likely yield 

useful improvements in processing speed. 
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1.0    INTRODUCTION 

The accuracy of a direction of arrival estimation procedure in the presence of 

noise is an important characteristic, especially at low signal to noise ratios. Although nu- 

merous approaches have been proposed [1] - [5], those based on maximum likelihood (ML) 

estimation are considered to achieve the best performance [6] assuming the underlying 

signal model is properly chosen. 

The idea behind the ML approach is relatively simple. Using an appropriate 

model of the signal environment, synthetic data can be generated and compared to the 

observed data. The maximum likelihood parameter estimates are taken as the values 

of the model parameters for which the synthetic data best fits (in the statistical sense) 

the observed data. Despite the simplicity of the idea, the actual derivation of the ML 

approach for a particular problem can often be very complex depending on the nature of 

the model and the measured data available. 

In this report a linear array of N uniformly spaced narrowband sensors is con- 

sidered. The complex baseband outputs from this array at time t can be modelled using 

M 
yn(t) = £ cm(t)e-^nd, (1) 

where M represents the number of signals impinging on the array, yn(t) is the model 

output for sensor n (0 < n < N — 1), cm(t) represents the complex baseband amplitude 

of the mth signal, u>m is the corresponding spatial frequency, and d is the spacing between 

sensor elements. The spatial frequency is related to the signal direction of arrival (f>m by 

27T 
Wm = — COs(^m), (2) 

where A is the signal wavelength. The direction of arrival is defined as the angle between 

the sensor baseline (in the direction from sensor 0 to sensor N — 1) and the direction of 

the signal (which is perpendicular to the wavefront). The model is adjusted by changing 

the values cm(t) and (f>m. 

Thd corresponding measured data at time t for sensor n is represented by xn(t). 

This data will differ from the model data due to the effects of noise, mutual coupling, 

multipath propagation, etc.. In this report, only noise is considered; in particular, white 

Gaussian noise, since this is the most common type of noise in practice.   The problem 



then, is to estimate the bearings of the incoming signals given the noisy data. 

Using these definitions of the model and measured data, various DF estimation 

methods based on maximum likelihood theory can be developed. In Section 2, one such 

method, deterministic maximum likelihood (DML), is discussed along with the difficulties 

associated with it. This is followed in Section 3 by a description of a proposed new 

algorithm, Balanced Data Focusing (BDF), which overcomes some of these difficulties. 

Detailed descriptions of various aspects of the BDF algorithm are discussed in Sections 

4 and 5. In Section 6, the results of computer simulations are used to compare the 

performance of the BDF method to the DML method, as well as to the MUSIC algorithm 

(an algorithm which has received considerable attention in the open literature). The 

conclusions are presented in Section 7. 

2.0    THE DETERMINISTIC MAXIMUM LIKELIHOOD METHOD 

Assuming that xn(t) has the same form as yn(t) with the addition of white 

Gaussian noise which is uncorrelated from sensor to sensor, then for K data samples the 

best fit between the model and data is achieved when [6] the mean squared error (MSE) 

given by 

MSE = £ £ M*0 - yn{tk)\2 (3) 
k=Q n=0 

is minimized. This is called the deterministic maximum likelihood (DML) approach since 

information about the statistics of the model parameters is not incorporated into the 

fitting procedure i.e. the statistics are assumed to be unknown. 

For the purposes of this reports, it is also convenient to represent the above 

expression in vector form as 

K-l 

E 
k=0 

MSE = £ (x(ifc) - y(h))H(x(tk) - y(tk)) (4) 

where x(ifc) and y (4) are TV x 1 elements vectors whose elements are given by the measured 

data a;o(*jfc),a:i(*fc),"-,:r;v-i(*fc) and the model data y0{tk),yi(tk), -,yN-i(tk) respectively, 

and the superscript H represents the conjugate transpose operation. The vectors x(^) 

and y(tk) represent samples of the measured and modelled data taken at time, tk, and 

are referred to as snapshots. 

The main difficulty with determining the model parameters which minimize the 



MSE is that no closed form solution exists. There are, however, closed form solutions for 

the complex amplitudes (represented by cm(tk)) given that the values for the bearings <j>i, 

<j>2, • ■ •, 4>M [6] are known. For example, the signal model data can be represented as 

y(tk) = Sc{tk) 

where S is the N x M normalized signal matrix given by 

(5) 

1, 
=>-Jw:c 

D-ju>l2d 

1, 
- ju»i d 

i 

-ju>2 2d 

1, 

-JU!(N-I)d -ju2{N-l)d -ju,3(N-l)d 

and c(tk) is the Mxl vector of complex amplitudes where 

Cl(ffc) 

c2(tk) 

c(tk) =      c3(tk) 

CM{h) 

The MSE can be rewritten as, 

o-JUM^d 

0-jwM(N-\)d 

(6) 

(7) 

A'-l 

MSE = J2 (x(<*) - Sc(tk))H(x(tk) - Sc(tk)) 
k=0 

Minimizing this expression with respect to c(tk) and solving leads to the result [6] 

c(tk) = (SHS)-1SH)x(tk) 

(8) 

(9) 

MSE = J2 x(hf(I - S(SHS)-1SH)x(tk) (10) 

Plugging this result back into equation (8) yields 

A-l 

£ 
k=0 

where I is the N x N identity matrix. 

The most obvious advantage of equation (10) is that it simplifies the problem 



from a search for the complex amplitudes and bearings (3M real parameters) to a search 

for bearings only (M real parameters). If the initial estimate of the bearings can be made 

with reasonable accuracy, several good methods exist which can fine-tune the estimates 

until the MSE is minimized [6] - [9]. The main danger of these methods is that if the initial 

values are improperly chosen, they will converge on solutions which are not optimum (i.e. 

a local minimum of the MSE function instead of the global minimum). 

The selection of initial values is typically performed using an estimator which 

requires no initial values but is less accurate than the DML approach. At low signal-to- 

noise ratios this can cause problems when the initial value estimates become so inaccurate 

that the search method used to determine the DML estimates is no longer guaranteed to 

find the global minimum. The results are therefore unreliable under these conditions. 

To overcome the initial value problem, an exhaustive search of all possible so- 

lutions can be performed, or more efficient approaches such as the Simulated Annealing 

algorithm [10] can be used to overcome the initial value problem. Unfortunately these 

methods achieve better reliability by sacrificing convergence speed and are generally too 

slow for most practical applications. 

3.0    THE BALANCED DATA FOCUSING ALGORITHM 

To overcome the initial value problem without sacrificing convergence speed a 

new approach, the BDF algorithm, is proposed. To simplify the following discussion, the 

single snapshot case is discussed here — extensions to multiple snapshots are presented 

in Section 5. Dropping the argument tk for convenience, the equation for MSE simplifies 

to 

MSE = (x - y)"(x - y) (11) 

In the BDF algorithm, the initial value problem is overcome by adjusting or 

"focusing" the data instead of adjusting the signal model. The purpose is to focus the 

data until it represent a valid form of the model data, i.e. defining S as the set containing 

all possible values y, the focusing procedure continues until x' G S where x' is the focused 

data. 

A simple approach to performing the focusing is to use a gradient descent tech- 

nique.   Assuming there is an error function e(x) that provides an estimate of the least 



square distance from x to S, then the focusing procedure can be defined by 

Xj+i = X,- - figi (12) 

where x,- represents the data after the ith iteration, Xo = x the initial value , fi the step 

size, and g, is the gradient defined by, 

ft = Vx£(xs-) (13) 

The procedure terminates when |e(x,-)| is less than a predetermined tolerance value. 

Since the set S contains an infinite number of solutions, there will be an infinite 

number of possible solutions for the focusing procedure. The ideal choice is the solution 

which lies closest to Xo in the least squares sense. Therefore the development of the error 

function e(x) is critical to the success of the BDF algorithm and is discussed in Section 

3.1. The gradient is derived in Section 3.2. Once the algorithm has converged, any number 

of DF algorithms [l]-[5] can be used to extract the bearings from x,-. However, since the 

calculation of e(x) involves the estimation of the autoregressive filter coefficients of the 

underlying signal model in x (see Section 4), the bearing estimates can also be determined 

by rooting the filter coefficients once the algorithm has converged. The step size \x also 

plays a role in the accuracy and convergence time of the algorithm and its selection is 

discussed in Section 3.3. 

3.1    The Error Function 

The definition of the signal model data was given in equation (1). An alternate 

expression is the autoregressive signal model given by 

M 

Vn=J2 KnVn-m (14) 
m=l 

for M < n < N, where the filter coefficients are defined by [16] 

fll   =   e^ld + ej"2d + ... + ejuJMd 

a        —      _eJ(wi+w2)rf _ gj(o;2+W3)d _ _ eJ(uM-l+UM)d 



aM   =   (-ir+1e M+\   j(uj\+W2+uJz + ...+u]M)d 

Equation (14) can be rewritten as 

M 

Y b*myn-M+m - 0 
m=0 

where 

and 

bm = 
0.M- 

bM = 

lo-M 

-1 

(16) 

(17) 

(18) 

It is relatively straightforward to show that the filter coefficients are conjugate symmetric, 

i.e. bm — bM_m. 

The filter 

b = 

bo 

h 
b2 

bM 

(19) 

is a spatial moving average filter with M nulls corresponding to the directions of the M 

signals in the model data. Applying this filter to the measured data x, the signals will be 

nulled out and the resultant output will be noise only. That is, 

M 

Y, b*mXn- 
m=0 

■m — 'In Vn (20) 

where r]n is the noise or error output.   Applying this to all the data (i.e.   letting n = 

M,M + l,...,iV-l) then 

BHx = n (21) 



where 

B = 
bbf 

ba 
(22) 

0 bM 

and n is an (TV — M) x 1 vector with elements TJM, VM+I, ■■■,VN-I- 

Since the error output of the filter will be a function of the signal-to-noise ratio, 

then an appropriate error function for the focusing procedure discussed in Section 2.0 is 

given by the sum of the square errors. Using equation (21) this can be expressed as 

H-, »tf. e(x) = n"n = x"BB"x (23) 

The filter coefficients bo, h,..., &M could be generated using equations (16), (17), 

and (18), however this provides no advantage since initial value estimates are still required 

for the bearings <f>i, fa,..., <f>M- Instead, the filter coefficients are estimated from the data 

itself. The methods by which this is done are discussed in some detail in Section 4. 

3.2    The Gradient 

The gradient was previously defined in equation (13). Using the expression 

developed for e(x) (equation (23)) and performing the gradient operation, 

gi   =   Vxe(xi) 

=   Vx(xfBBHx,) 

=   2BBHxs (24) 

3.3    The Step Size fi 

An appropriate step size can be determined using a first order Taylor series 



expansion of e(x,-) to get 

e(xt+1) » e(x,-) + Qg? (xt+1 - x8) + ^(x,-+1 - x,-)*gi) (25) 

Substituting the right side of equation (12) for x,-+i and solving for /z yields 

, « £(X'} " e(*+l) (26) 
Si   St 

To minimize convergence time e(xi+i) = 0 is chosen which gives 

r « ^ (27) 
Si   Si 

Ideally, with this choice the focusing procedure converges in one step.   However, since 

equation (26) is only an approximation a smaller step size is required. Accordingly, 

p = A^xO (2g) 

Si   Si 

where 0 < fi0 < 1-   Through empirical testing it has been found by the author that 

fi0 = 0.3 provides a good compromise between convergence speed and accuracy. 

Using this last result the expression for updating the data (equation (12)) be- 

Xi+i = Xj 

4.0    GENERATING THE FILTER COEFFICIENTS 

comes .   N 
l*oe(x,-)g,- (29) 

For the purposes of this analysis Equation (23) can be rewritten as 

a2 = bHXfXf b (30) 



where a2 = e(x) and X^ is the forward data matrix defined by 

X, 

xo, X-L, X2, ■ ■ ,     XN-M-1 

Xi, X2-, X3, ■ • ,       Xx-M 

X2, X3, X4, ■ ■ i     XH-M+1 

XM,     XM+1,    XM+2, XN-1 

(31) 

The goal here is to estimate the M + 1 filter coefficients, bo,bi,b2,...,bM from the data 

instead of being required to explicitly specify <f>\,..., <J>M- This can be done by minimizing 

a2 with respect to b subject to some constraints. 

An obvious constraint on b is that it must be conjugate symmetric, since fil- 

ters generated from the model signals have this property. An important feature of the 

conjugate symmetry property is that it only occurs for 

(i) complex sinusoidal signals of the form (see also equation (1)) 

Cm(tk)p-ne-iUmnd (32) 

(ii) dampled complex sinusoidal signal pairs of the form 

am(tk)p-ne-j"™nd + bm(tk)pne^nd (33) 

or combinations of the two-signal models where am{tk) and bm(tk) are the complex am- 

plitudes and p is the real-valued damping factor. The conjugate symmetry constraint 

therefore ensures that the bearing estimates derived from b will be based on solutions 

which correspond to case (i) or (ii). Other researchers [11] have noted that the inclusion 

of case (ii) does not significantly degrade estimator performance. Results supporting this 

assertion are given in Section 5. 

Based on the conjugate symmetry property of b, equation (30) can also be 

written as, 

(34) a  = b  X(,Xj, b 



where X^ is the backward data matrix defined by 

Xfc = 

x N-li 

xN-2i 

'N-Zi 

lN-M-li 

lN-2i 

cN-3i 

JN-Ai 

'N-Zi 

lN-4i 

lN-5i 

JM 

lM-l 

lM-2 

cN-M-2i    XN-M-Zi 

(35) 

The equivalence of equations (30) and (35) was derived assuming b was conjugate sym- 

metric, however this equivalence also holds for any choice of b as long as there exists some 

complex constant a such that \a\ = 1 and the vector ab is conjugate symmetric. Since the 

constant multiplier a has no effect on the filter nulls (and therefore the estimated signal 

bearings), then if b is not conjugate symmetric but a value for a exists, it is assumed 

that b is multiplied by a to make it conjugate symmetric. 

A second constraint that is required is a nontriviality constraint. The purpose is 

to avoid the solution b0 = h = ... = bM = 0 which is obviously meaningless. Accordingly, 

two such constraints have been investigated in this report, namely 

bHb = l (36) 

which leads to an eigenanalysis based approach, and 

bHu, = 1 (37) 

which leads to a linear prediction/interpolation approach. For the latter approach k 

represents the row in X/ or Xb to be predicted/interpolated (0 < k < M) and uk is an 

M + 1 column vector of zeros except for the kth element which is uk = 1. 

The choice of the nontriviality constraint influences the performance of the BDF 

algorithm. The purpose of investigating two different choices is to illustrate the differences. 

Neither choice was selected based on optimality criteria, rather they were selected because 

they are commonly used constraints in DF estimation theory. The next two sections 

describe how these constraints are incorporated with the conjugate symmetry constraint 

into a solution for the minimization of a2. 
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4.1     Eigenvector Approach 

For the eigen analysis approach, advantage is taken of the equivalence between 

equations (30) and (34) to recast the minimization as 

2cr   = b  XfbXfbb 

where X/& the forward-backward data matrix is defined by 

X/6 = [X/,X6] 

(38) 

(39) 

Minimizing this expression subject to the constraint given in (36) and temporarily ignoring 

the conjugate symmetry constraint leads to the result (also known as Pisarenko Harmonic 

Decomposition [12]) 

XfhXfbb = 2<72b, (40) 

where vector b is an orthonormal eigenvector of the matrix X/^X^ and 2<r2 is the cor- 

responding eigenvalue. Since the solution is not unique, b is chosen as the eigenvector 

corresponding to the smallest eigenvalue of UM- Eigen analysis or singular value decom- 

position techniques can be used to determine the eigenvectors and eigenvalues. 

Although no obvious conjugate symmetry constraint has been applied, an eigen- 

vector of the desired form corresponding to the eigenvalue 2<x2 will always exist. For 

example, the matrix 

R/& = XffcX fb-^fb (41) 

has the structure 

R/6 = 

r0o, rl0' 

7*10, >"ii, 

r2o, *"21, 

205 

'215 

22> 

I'M-1,0,     TM-2,1,     FM-3,1, 

fMfi,       fM-1,0,     fM-2,0, 

' M,0 

r*M-l,0 

rM-2,0 

'10 

roo 

(42) 

The matrix R//, has the properties that it is both Hermitian symmetric (r,-j = r£) and 

persymmetric (r,-j = rM_iM_X Assuming that b is a valid solution to equation (40) 

but is not conjugate symmetric (nor can it be made conjugate symmetry through the 

multiplication of a complex constant) then it is apparent from the form of R/& that b 

11 



must also be a valid solution where 

b = 
b*M-i 
h* °M-2 (43) 

The new vector b will also be an orthonormal eigenvector and b^b = 0. Using these two 

eigenvector solutions it will always be possible to construct a new eigenvector solution b' 

which is conjugate symmetric, for example, 

b< = 7!(b + b). (44) 

4.2    The Balance Linear Interpolator 

The solution to the equation (30) using the linear prediction/interpolation non- 

triviality constraint (equation (36)) is given by 

XfXfb = <72um (45) 

where bm = 1, um is an (M + 1) x 1 vector with elements u0 = i*i = ... = uM = 0 except 

1, and <r2 is the prediction error given by 

r2 = bHXfXf b (46) 

Since the multiplication of the filter coefficients by a constant phase term has no 

effect on the location of the filter roots or prediction error, an alternate form of equation 

(45) which more easily allows the conjugate symmetry constraint to be imposed is given 

by 
XjXfb = ca2um (47) 

where c is an arbitrary complex term such that \c\ = 1, and now bm = c. 

The conjugate symmetry constraint can be imposed by noting that if b has 

12 



conjugate symmetry, it also satisfies the relationship 

X&Xf, b = c*a UM-T. 

where X& is the backward data matrix defined by 

(48) 

Xfc = 

-JV-l) 

lN-2i 

'AT-35 

xN-2i xN-3> 

'iV-35 

lN-4i 

X iV-45 

^-55 

)       XM 

5     XM-1 

>     xM-2 

X N-M-li    •LN-M-2i    ^AT-M-35     •••■> X j* 

(49) 

Therefore if b is conjugate symmetric it must simultaneously satisfy the both equations 

(47) and (48). This can be forced by adding the two expressions to get 

XfXfb + X/Xfb = Rfbb = 2<72(cum + c*nM-m) (50) 

where R/f, was defined previously (equation (42)). In this new expression, c is no longer 

arbitrary as will be seen shortly. 

Before discussing the actual solution of b, a2, and c, it is useful to define the 

matrix 

Q = R -i 
fb (51) 

where the elements of Q are given by qij for i, j = 0,1,..., M. It has been assumed here that 

R/6 is invertible. The matrix Q has the properties that it is both Hermitian symmetric 

(qij = q*-) and persymmetric (%■ = <7Af-t,M-j) since R-/& also nas these properties [12]. 

These properties will be used to make simplifications in the following analysis. 

From this definition the filter coefficients can be expressed as 

b = 2cr2Q(cUm + CVLM-m) (52) 

Using the fact that bm = c then u^b = c and 

2<Q(|c|2um + (c*)2uM-m) 
(53) 
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In terms of the elemental values of Q, 

1 2 -  (54) a   = 
2{qmm + {c*)2qm,M-m) 

Noting that by Hermitian symmetry qmm must be real, then the choice of c that minimizes 

cr2 occurs when 

(c*)2qm<M-m =  \qm,M-m\ (55) 

Therefore 

c 
qm,M—m 

\qm,M—m\ 
(56) 

Summarizing these results and using the persymmetry property of Q to express 

the results in terms of the column elements q0m, q\m,..., qMm then 

<1M-T, 

a2 

\qM—m,m | 

1 

(57) 

(58) 
£\qmm T" \qM-m,m\) 

and 

bt = 2a\cqm + c*q*M-i,m)      for  * = 0,1, -, M (59) 

5.0    EXTENSION TO THE MULTIPLE SNAPSHOT CASE 

Although single snapshot processing can be useful in some situations, in many 

real world systems multiple snapshot data is available. Utilizing such data can greatly 

enhance estimator performance. The extension of the BDF method to multiple snapshots 

is relatively straightforward. 

Reintroducing the argument tk to represent a quantity based on the sensor data 

measured at time instance tk, then for the multiple snapshot case the sensor data x(i0), 

x(ii), ..., x(tK-i) will be available for processing. For convenience the sensor data matrix 

is defined as 

X=[x(io),x(<1),...,x(«if_1)] (60) 

and the error function is then represented by e(X). The forward-backward data matrix 
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in this case is also redefined as 

Xfb = [Xfb(t0),Xfb{ti),... ,Xfb(tK-i)] (61) 

where Xjb(tk) is the forward-backward data matrix formed from a single data snapshot 

x(tk) using equations (31), (35), and (39). 

The determination of the filter tap weights proceeds in the same manner de- 

scribed in Section 4 using the new definition of Xfb- The gradient vector given in equation 

(24) is easily modified to become the gradient matrix equation 

G = 2BFBX (62) 

Finally, the expression for updating the data (equation (29)) becomes 

Xl+1 - X< + trace{G? G,-} (63) 

From this derivation it can be seen that, compared to the single snapshot case, 

increasing the number of snapshots to K increases the amount of processing by a factor of 

K. For a large number of snapshots the processing requirements may become prohibitive. 

These requirements can be eased somewhat by noting that the MSE for the DML approach 

given in equation (10) can be rewritten as 

MSE = trace{XXF(I - S(SH S)-^*)} (64) 

By inspection, it is clear that the data matrix X can be replaced by an equivalent matrix 

Z as long as 

ZZ" = XXH (65) 

For the BDF algorithm, this means that the columns of the matrix Z can be processed 

in place of x(£0), x(ii), ..., X(£A'-I)- If the choice of Z is restricted to square matrices, 

then the maximum effective number of snapshots that need to be processed by the BDF 

algorithm is limited to iV, which results in a considerable savings in processing when 

K > N. 

One approach to computing the matrix Z is to perform an eigen decomposition 

15 



on XXH to get 

XX" = X^v.-v?, (66) 
t'=0 

where the eigenvalues are ordered so that A0 > Ax > A2 > ... > \N-I and the corre- 

sponding eigenvectors v0, Vi, v2,..., vjv-i form an orthonormal basis set. The columns 

of Z are then given by 

^     for i = 0,l,2,...,N-l (67) 

Although there are much more efficient approaches to generating Z (e.g. Cholesky 

or QR decomposition), the eigen decomposition approach provides a simple method to 

introduce further improvements. In other research the observation has been made that 

the eigenvectors v0, Vi,..., vM-i are mainly a function of the signal(s) present (i.e. sig- 

nal subspace) and the eigenvectors vM, Vjw+i, •••, VJV-I (i-e. noise subspace) are mainly 

a function of noise, e.g. [4] and [5]. Therefore the noise subspace eigenvectors can be 

ignored and the columns of Z computed according to 

Zi = y/\i - A„v,-     for z' = 0,l,2,...,M-l (68) 

where A„ compensates for the cumulative effects of noise in the main diagonal of the 

matrix XX" and is estimated using, 

A secondary advantage of rejecting the noise subspace eigenvectors is that the number of 

input vectors is further reduced from TV to M. 

6.0    SIMULATION RESULTS 

To investigate the performance of the BDF approach, computer simulations were 

run based on a linear N element sensor array with uniform half-wavelength spacing. Noise 

was additive white Gaussian noise with variance r}2 at each sensor output. The noise was 

also considered to be isotropic in nature and uncorrelated from sensor to sensor. The 

signal-to-noise ratio (SNR) is defined here as the ratio of a signal with unity power (i.e. 
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cm(t) — 1 in equation (1)) to the noise power, or 

SNR = -101og(7/2)     dB. (70) 

In the simulations used to generate the following results all signals were constant ampli- 

tude and unity power (unless otherwise stated). For uncorrelated signals, the signal phase 

for each signal was independently and randomly chosen between — TT and IT radians for 

each snapshot. For fully correlated signals, signal phases were randomly chosen between 

—7T and 7T radians for each snapshot, but the relative phases between signals was kept 

constant. Each trial consisted of processing K snapshots of sensor data to generate a 

single estimate of the signal bearings. Successive trials consisted of using the same signal 

data but increasing the contribution of the noise data in 1 dB steps until the entire range 

of interest was covered. Then new signal and noise data was generated and the process 

repeated L times. 

For comparison purposes three different methods were used to estimate the signal 

bearings for each trial. These three methods were the BDF method, the DML method, 

and root-MUSIC [15]. The root-MUSIC method was included since it has been extensively 

reported in the open literature and become a standard by which other estimators are often 

compared. 

For the BDF method the value of the step adjustment parameter //0 in equa- 

tion (63) was chosen to be 0.3. It was empirically found that values greater than this 

degraded accuracy, while smaller values increased the computation time without signifi- 

cantly increasing accuracy. In the event that an iteration resulted in a greater error (i.e., 

e(X,+i) > e(Xj)), \i was decreased by 30% and the iteration repeated. Iterations in the 

algorithm were stopped when the value of e(X,) < 10_14trace{XJEjrX}, which typically 

occurred between 50 and 200 iterations. This value was more than sufficient to ensure 

accuracy and could probably have been relaxed in most cases. 

For the DML method an exhaustive search was performed by varying each angle 

in 1 degree increments to locate minimums in the MSE function, followed by a fine 0.1 

degree search around each minimum to determine the global minimum. The Alternating 

Projection Maximization algorithm [7] was then used to further fine-tune the results. 

For the root-Music estimator the estimated (p + 1) x (p + 1) covariance matrix 

was computed using equations (31), (35), (39), and (41) where the parameter p was used 

in place of M.  For multiple snapshot processing with uncorrelated signals, the value of 
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p was chosen to be N — 1 (instead of M as for the BDF method). For single snapshot 

processing, or fully correlated signals, the value of p was chosen to optimize accuracy and 

threshold performance for each particular signal environment (i.e. spatial smoothing was 

used). 

Accuracy is defined here as 

Accuracy = 
\ 

n M      K 

£ 5>«w - KY, (7i) 
m=l (=1 

where L represents the number of trials and <f>mi is the estimate of the rnth bearing for 

the Ith trial. 

6.1 Comparing Estimates from Different Methods 

Figure 1 compares the performance of the BDF method with the DML and root- 

MUSIC methods over 100 trials with single snapshot processing (K = 1), N = 8 sensors, 

a signal-to-noise ratio of 30 dB, and two signals with bearings of 40 and 120 degrees. For 

the root-MUSIC method the value p = 5 was used since this not only optimizes accuracy 

but maximizes the number of signal bearings that can be estimated by this method using 

a single snapshot. In this example the BDF method produces nearly identical results to 

the DML method. The root-MUSIC estimates are different and slightly poorer (in this 

example by a factor of 1.4). 

6.2 Damped Solutions 

In deriving an error function for the BDF method, the signal model also incor- 

porated undesired damped sinusoid pairs of the form represented by equation (33). The 

undesired solutions introduce a mechanism for error in the BDF algorithm. For example, 

against two signals with different bearings the DML method will estimate two distinct 

bearings. In the BDF method, if equation (33) is chosen as the best model for the data, 

then the estimated bearings for the two signals will be identical. This is obviously not 

correct. 

In practice the selection of the undesired forms are far less common in the so- 

lution than the desired signals, and when they do occur, do not significantly degrade the 
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Figure 1: Estimator bearing errors for a series of 100 trials 
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Table 1: Damped sinusoid solutions 

BDF Signal Pair DML Estimate 

P <t> fa fa 
0.862 
0.873 
0.886 
0.895 
0.914 
0.937 
0.940 
0.946 
0.955 
0.963 

67.61 
68.14 
67.00 
66.92 
67.52 
67.65 
67.67 
66.85 
67.47 
67.61 

67.58 
68.00 
66.96 
66.88 
67.47 
67.60 
67.66 
66.81 
67.41 
67.58 

67.66 
68.15 
67.08 
67.00 
67.56 
67.68 
67.73 
66.90 
67.49 
67.65 

results. To illustrate this a simulation experiment was run with two signals at bearings of 

65 and 70 degrees and a signal-to-noise ratio of 23 dB. Using single snapshot data (K — 1) 

estimates of the signal bearings were made using both the DML and BDF methods. 

Out of 500 trials, damped sinusoid pair estimates occurred 3 times for the BDF 

method. The estimated bearing <f> and corresponding damping factor <j> for the first 10 of 

these undesired solutions is shown in Table 1. The corresponding DML estimates, fa and 

fa, are also shown in the table. 

It is readily apparent from the results shown in Table 1 that when pairs of 

undesired signal types are selected by the BDF method, the DML solution has almost 

converged to a single bearing. The result is, that compared to the DML method, the 

bearing accuracy of the BDF method is not significantly degraded. 

6.3    Comparison of the EV and BLI Approaches 

Figure 2 shows the performance of the BDF method under difficult conditions 

(8 sensors, single snapshot processing, and signals at closely space bearings of 69 and 70 

degrees) for two different approaches to filter estimation, namely, the eigenvector approach 

(EV) and the balanced linear interpolator (BLI). For this and the following simulations 

L = 500 trials (see equation (71)). At high signal-to-noise ratios both approaches perform 

equally well. At lower signal-to-noise levels, a point is reached where performance degrades 
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Figure 2:  Estimator bearing accuracy for different focusing schemes (<f> = 69 and 70 
degrees, N = 8, K = 1) 
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at a significantly higher rate than would be predicted from performance at higher signal- 

to-noise ratios. Defining this as the threshold point, then in this example, threshold 

occurs at 51 dB for the EV approach, and 47 dB for the BLI approach. In comparing 

the BLI approach to the EV approach, the BLI clearly outperforms the EV approach. 

This is a fortuitous result since the BLI approach is computationally less intensive. Given 

these advantages, the following simulations were performed using the balanced linear 

interpolator (as described in Section 4.2) to generate the filter coefficients. 

6.4    Single Snapshot Estimator Performance 

Figures 3 and 4 show the accuracy of the BDF, DML, and root-MUSIC methods 

for a single-signal environment and a two-signal environment, respectively, using N = 8 

sensors. Not surprisingly, all three estimators perform almost equally well (within 1 dB) 

in the single-signal case. The performance advantage of the DML or BDF estimators 

compared to root-MUSIC becomes apparent when multiple signal environments are con- 

sidered. In Figure 4, for example, the DML and BDF estimators have better accuracy 

than root-MUSIC for signal-to-noise ratios above threshold. The values of p used for 

root-MUSIC in Figures 3 and 3 were p = 7 and p = 5 respectively. 

Figures 5 and 6 show two examples of single snapshot processing with N — 8 

sensors where two signals are closely spaced (p = 5 for root-MUSIC). In both cases the 

threshold points for the BDF and DML methods occur at signal-to-noise ratios up to 6 

dB lower than root-MUSIC. The apparently superior performance of the BDF method 

compared to the DML method for signal-to-noise ratios below the threshold point for each 

estimator is not important, since the bearing estimates in this region are unreliable and 

often meaningless (random). Therefore, there is relatively little to be gained by comparing 

the accuracies of different estimators for signal-to-noise ratios below the threshold point. 

The superior performance of root-MUSIC above threshold in Figure 6 is surprising since 

using a value of p < N — 1 effectively reduces the array aperture. This usually results in 

poorer accuracy, as in Figure 5, however in Figure 6, the opposite is true. 

Figures 7 and 8 show two more examples of single snapshot processing with 

N = 4 and N = 16 sensors respectively (with p - 2 and p = 10 respectively for root- 

MUSIC). In these two examples the threshold points for all three estimators is identical. 

Above threshold the BDF and DML methods have superior accuracy to root-MUSIC 

equivalent to a 2 dB increase in the SNR. 
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Figure 3: Estimator bearing accuracy versus SNR (<j> = 40 degrees, N = 8, K = 1) 
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Figure 9: Estimator bearing accuracy versus SNR (<f> = 65, 70, and 75 degrees, N = 8, 
K = 1) 
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Figure 9 shows one final single snapshot processing example for 8 sensors and 

three signals (p = 5 for root-MUSIC). Note that the DML results are not shown here due 

to the computational difficulties of performing an exhaustive three dimensional search. 

Analysis of estimator performance on a trial by trial basis for SNR = 47 dB and SNR 

= 48 dB has shown that for this example threshold performance of the DML and BDF 

methods are within 1 dB. Above threshold their accuracies are the same. 

6.5    Multiple Snapshot Estimator Performance 

The performance of all three estimators in the last five examples is quite poor. 

Better results can be achieved if more snapshots are available for each trial. Figure 10 

shows the performance of the BDF method using K = 100 snapshots per trial for various 

types of noise preprocessing (see Section 5.0) and assuming the signals are uncorrelated. 

These include no preprocessing, full processing using equation (66), and partial processing 

using equation (66) but including all eigenvectors (i.e. i = 0,1,2,..., N - 1 which is 

equivalent to subtracting the diagonal noise matrix XVI from RJV). From the results, 

performance with full noise processing is the best, so that in the following examples full 

noise processing for the BDF method is performed. 

6.5.1    Uncorrelated Signals 

Figure 11 shows the same signal environment as in Figure 10 but comparing 

the BDF, DML, and root-MUSIC approaches. Again both the DML and BDF methods 

outperform root-MUSIC, despite the fact that under these conditions root-MUSIC can 

utilize the full array (i.e. no spatial smoothing, or p = 7). 

Figure 12 shows the same signal environment as in Figure 6 except where K = 

100 snapshots were used for each trial. The relative performance of each of the estimators 

is the same as in Figure 12. 

Figure 13 replots the performance of the BDF method from Figures 6 and 12 

over the same range of SNR. This figure illustrates the improvements that result with 

multiple snapshot processing compared to single snapshot processing. In this example, 

increasing the number of snapshots K from 1 to 100 is equivalent to increasing the SNR 

by 40 dB. 
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Figure 15 is a five-signal (uncorrelated) example comparing the BDF method to 

root-MUSIC (p — 7) for the case where the K = 10 snapshots and N — 10 sensors were 

used. Again due to the computational difficulties of implementing the DML method for 

more than two signals, its performance is not shown. Analysis of DML performance on 

a trial by trial basis for SNR's between 38 and 40 dB, and using various initial starting 

bearings, has determined that threshold for the DML method occurs at 39 dB or higher. 

Above threshold the DML and BDF methods were found to have the same accuracy. 

6.5.2    Correlated Signals 

Figures 14 and Figure 16 show examples of increasing the number of snapshots for 

the same signal environment used in Figure 7 and assuming the signals are fully correlated. 

In Figure 14 the threshold for the BDF method occurs at a lower SNR than either the 

DML or root-MUSIC methods. In Figure 16 the threshold for the BDF and root-MUSIC 

methods occur at a slightly lower SNR than the DML method. The superior threshold 

performance of the BDF method compared to the DML method can be explained by the 

fact that the BDF method appears to favour signal geometries with closely spaced signals. 

This assertion is supported by that the fact that in Figure 4 the threshold performance of 

the BDF method was slightly worse when the signals were widely spaced (<f> = 4 and 60 

degrees). At higher signal-to-noise ratios both the BDF and DML methods have identical 

accuracies and outperform root-MUSIC due to the loss of effective aperture as a result 

of using spatial smoothing. Spatial smoothing was required for the root-MUSIC method 

due to the fact that the signals were fully correlated. 

The advantage of increasing the number of snapshots K is also illustrated in 

Figure 17 which summarizes the results for the BDF method from Figures 7, 14, and 16. 

Although the improvement is smaller than for uncorrelated signals, it is still significant 

with an equivalent SNR improvement of approximately 20 dB for the case where K = 100 

compared to the case where K = 1. 

6.6    Unequal Signal Amplitudes 

Figure 18 shows one final simulation example where the signal amplitudes were 

1.0 and 0.1 corresponding to signal bearings of 95 and 105 degrees. The signals were 

assumed to be uncorrelated and p = 5 was used for the root-MUSIC method.   Again 
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the BDF method performs as well as the DML method and better than the root-MUSIC 

method in terms of threshold. Above threshold all three estimators have identical accu- 

racies. 

6.7    Processing Speed 

Although no claim is made that the algorithms tested were optimally coded, or 

for that matter, that the most appropriate search procedures were chosen, some mention 

of relative processing times is in order. Not surprisingly root-MUSIC was the fastest 

algorithm under all conditions. The BDF algorithm was found to be about an order of 

magnitude slower than root-MUSIC due to the slower convergence of the BDF algorithm 

(typically between 50 and 200 iterations). For the single snapshot case the convergence 

time of the BDF method was found to be relatively insensitive to the signal parameters 

including the number of signals, signal amplitudes, and bearing spacing. For the multiple 

snapshot case convergence time was slower for an increasing number of signals due to 

the increase in number of computations (oc M) and a general increase in the number of 

iterations required. 

As stated earlier, the DML method was implemented using an exhaustive search 

to approximately locate the global minimum of the DML error function (i.e. determine 

the initial bearing estimates), followed by a fine search to fine tune the results. Ignor- 

ing the estimation of the initial bearings for the moment, fine tuning was achieved using 

the APL-ML algorithm. This algorithm was chosen as it was found to be computation- 

ally the fastest of the algorithms surveyed ([6], [7], and [8]) for the case of two closely 

spaced signals. Generally, once properly initialized, the APM-ML algorithm converged 

in a slightly greater amount of time than the BDF method for the two-signal case, al- 

though occasionally it was many times slower. The APM-ML algorithm was significantly 

slower for cases involving three or more signals especially when they were closely spaced 

in bearing. Returning to the problem of estimating the initial bearings, the additional 

processing required adds to the total DML method processing time compared to simply 

fine tuning the results. In the case where an exhaustive search is used (as reported here), 

the additional time can be an order of magnitude or more greater than the time required 

for fine tuning. An alternate procedure for determining the initial bearings which is sim- 

ple and fast was proposed in [7] . Although this procedure was reported to work well in 

the multiple snapshot case, for the single snapshot processing examples described in this 

paper, this procedure was not as effective. 
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7.0    CONCLUSIONS 

In this paper a bearing estimation method for uniform linear arrays called Bal- 

anced Data Focusing was described which was shown to achieve maximum likelihood 

performance. The method uses an error function based on a linear interpolation filter 

which estimates the minimum mean squared error (MSE) of the deterministic maximum 

likelihood (DML) method. Using this error function, data input from the sensors is ad- 

justed, or focused, until the minimum MSE is 0. The focused data can then be treated 

as noiseless data and any number of techniques used to extract the signal bearing infor- 

mation. 

In simulations it was found that the BDF method performed as well as the 

DML method and outperformed root-MUSIC in terms of both accuracy and threshold 

performance, even under extreme conditions where signals were very closely spaced in 

azimuth. An important advantage of the BDF method compared to root-MUSIC, is that 

the BDF method can deal with both uncorrelated and fully correlated signals (or the 

equivalent single snapshot problem). An important advantage compared to the DML 

method is that no initial values are required. A poor choice of inital values for DML can 

lead to meaningless results. 

A disadvantage of the BDF method is that it is slower than root-MUSIC, espe- 

cially as the number of signals increases. Further research into better search algorithms 

(compared to the gradient descent technique used) would likely yield useful improvements 

in processing speed. 

42 



8.0    REFERENCES 

[1] Burg, J.P., "Maximum Entropy Spectral Analysis", Ph.D. dissertation, Stanford Uni- 

versity, Stanford, California, 1975. 

[2] Gabriel, W.F., "Spectral Analysis and Adaptive Array Superresolution Techniques", 

Proceedings of the IEEE, vol. 68, no. 6, pp. 654-666, June 1980. 

[3] Borgiotti, G.V., and Kaplan, L.J., "Superresolution of Uncorrelated Interference 

Sources by Using Adaptive Array Techniques", IEEE transactions on Antennas and 

Propagation , vol. 27, no. 6, pp. 842-845, November 1979. 

[4] Schmidt, R.O., "Multiple Emitter Location and Signal Parameter Estimation", IEEE 

Transactions on Antennas and Propagation, vol. 34, no. 3, pp. 276-280, March 1986. 

[5] Tufts, D., and Kumaresan, R., "Estimation of Frequencies of Multiple Sinusoids: 

Making Linear Prediction Perform Like Maximum Likelihood", Proceedings of the 

IEEE, vol. 70, no. 9, September 1982. 

[6] Bresler, Y., and Macovski, A., "Exact Maximum Likelihood Parameter Estimation 

of Superimposed Exponential Signals in Noise", IEEE Transactions on Acoustics, 

Speech, and Signal Processing, vol. 34, no. 5, pp. 1081-1089, October 1986. 

[7] Ziskind, I., and Wax, M., "Maximum Likelihood Estimation via the Alternating 

Projection Maximization Algorithm", IEEE International Conference on Acoustics, 

Speech, and Signal Processing, ICASSP 87, pp. 2280-2283, 1987. 

[8] Feder, M., and Weinstein, E., "Parameter Estimation of Superimposed Signals Using 

the EM Algorithm", IEEE Transactions on Acoustics, Speech , and Signal Processing, 

vol. 36, no. 4, pp. 477-489, April 1988. 

[9] Stoica, P., Moses, R., Friedlander, B., and Soderstrom, T., "Maximum Likelihood 

Estimation of the Parameters of Multiple Sinusoids from Noisy Measurements", IEEE 

Transactions on Acoustics, Speech, and Signal Processing, vol. 37, no. 3, pp. 378- 

392, March 1989. 

[10] Press, W., Flannery, B., Teukolsky, S., and Vetterling, W., Numerical Recipes in C, 

The Art of Scientific Computing, Cambridge University Press, Cambridge, 1988. 

43 



[11] Stoica, P. and Sharman, K.C., "Maximum Likelihood Methods for Direction-of- 

Arrival Estimation", IEEE Transactions on Acoustics, Speech , and Signal Process- 

ing, vol. 38, no. 7, pp. 1132-1143, July 1990. 

[12] Marple, S.L., Digital Spectral Analysis with Applications, Prentice-Hall, Alan V. Op- 

penheim, editor, Englewood Cliffs, New Jersey, 1987. 

[13] Klema, V.C., and Laub, J.L., "The Singular Value Decomposition: Its Computation 

and Some Applications", IEEE Transactions on Automatic Control, vol. 25, no. 2, 

pp. 164-176, April 1980. 

[14] Haykin, S., Adaptive Filter Theory, Prentice-Hall, Thomas Kailath, editor, Engle- 

wood Cliffs, New Jersey, 1986. 

[15] Rao, B.D., and Hari, K., "Performance Analysis of Root-Music", IEEE Transactions 

on Acoustics, Speech, and Signal Processing, vol.37, no. 2, pp. 1939-1949, December 

1989. 

[16] Read, W.J.L., "An Evaluation of Superresolution Methods for Tactical Radio Direc- 

tion Finding", DREO Technical Report, No. 1091, October 1991. 

44 



UNCLASSIFIED 

SfCUftlTY CLASSIFICATION OF FORM 
(highest classification of Title, Abjtract, Keywords) 

-45- 

DOCUMENT CONTROL DATA 
(Sacurity claailflcation of tltla. body of abitraet and Indaxin« annotation mutt ba antarad whan lha evarall documant la elatalflad) 

1. ORIGINATOR (the name end address of the organization preparing the document. 
Organizations for whom the document was prepared, e.g. Establishment sponsoring 
a contractor's report, or tasking agency, are entered in section ft.) 

DEFENCE RESEARCH ESTABLISHMENT OTTAWA 
NATIONAL DEFENCE 
SHIRLEYS BAY, OTTAWA, ONTARIO K1A 0Z4  CANADA 

SECURITY CLASSIFICATION 
(overall security classification of the document. 
including special warning terms if applicable) 

UNCLASSIFIED 

3.   TITLE   (the complete document title as indicated on the title page. Its classification should be indicated by the appropriate 
abbreviation (S.C or U) in parentheses after the title.) 

BALANCED DATA FOCUSING:     DIRECTION OF ARRIVAL ESTIMATION WITH MAXIMUM LIKELIHOOD 
PERFORMANCE   (U) 

4.    AUTHORS     (Last name, first name, middle initial) 

READ,   W.J.L. 

5.    DATE OF PUBLICATION   (month and year of publication of 
document) 

NOVEMBER 1994 

6a. NO. OF PAGES     (total 
containing information. Include 
Annexes, Appendices, etc.) 

50 

6b. NO. OF REFS (total cited in 
document) 

    16 
7.    DESCRIPTIVE NOTES (the category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of 

report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.) 

DREO  REPORT 

8.    SPONSORING ACTIVITY   (the name of the department project office or laboratory sponsoring the research and development Include the 

DEl^CE RESEARCH ESTABLISHMENT OTTAWA 
NATIONAL DEFENCE 
SHIRLEYS-BAY,   OTTAWA,   ONTARIO    K1A 0Z4     CANADA 

9a. PROJECT OR GRANT NO. (if «ppropriate, the applicable research 
and development project or grant number under which the document 
was written. Please specify whether project or grant) 

041LX 

9b. CONTRACT NO.    (if appropriate, the applicable number under 
which the document was written) 

10a. ORIGINATOR'S DOCUMENT NUMBER   (the official document 
number by which the document is identified by the originating 
activity. This number must be unique to this document) 

DREO  REPORT 1233 

10b. OTHER DOCUMENT NOS.    (Any other numbers which may 
be assigned this document either by the originator or by the 
sponsor) 

1 1. DOCUMENT AVAILABILITY    (»ny limitations on further dissemination of the document, other than those imposed by security classification) 

x£ Unlimited distribution 

) Distribution limited to defence departments and defence contractors; further distribution only as approved 
) Distribution limited to defence departments and Canadian defence contractors; further distribution only as approved 
) Distribution limited to government departments and agencies; further distribution only as approved 
) Distribution limited to defence departments; further distribution only as approved 
) Other (please specify): 

12. DOCUMENT ANNOUNCEMENT        tony limitation to the bibliographic announcement of this document This will normally correspond to 
the Document Availabilty (11). However, where further distribution (beyond the audience specified in 11) is possible, a wider 
announcement audience may be selected.) 

UNLIMITED 

UNCLASSIFIED 

SECURITY CLASSIFICATION OF FORM 

0CDQ3    2/06/87 



-46- UNCLASSIFIED 
SICURITY CLASSIFICATION OF FORM 

13. ABSTRACT  ( a brief «id factual summary of the doeument It may also appear elsewhere in the body of the document itself. It is highly 
desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the 
security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S). (0, or (U). 
It is not necessary to include here abstracts in both of fie») languages unless the text is bilingual). 

(U) The performance of a direction of arrival estimation procedure 
at low signal-to-noise ratios and limited data samples is an 
important characteristic. The approach based on maximum likelihood 
(ML) estimation is considered to be among the best for this problem 
as long as the underlying signal model is properly chosen, 
unfortunately, in most cases, there is no closed-form solution so 
fast search procedures are employed. Given no a priori knowledge, 
selecting the initial parameter values for these search procedures 
can be a difficult problem, especially under low signal-to-noise 
conditions. In this paper, a new method for uniform linear sensor 
arrays which overcomes the initial value problem is introduced. 
This method is called Balanced Data Focusing (BDF). Simulation 
results are included comparing the performance of this new method 
to that of the ML approach using the Alternating Projection 
Maximization search procedure and another popular estimation 
approach, the root-MUSIC method. 

14. KEYWORDS. DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases thet characterize a document and could be 
helpful in cataloguing the document They should be selected so that no security classification is required. Identifiers, such as equipment 
model designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected 
from a published thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus-identified. If it is not possible to 
select indexing terms which are Unclassified, the classification of each should be indicated as with the title.) 

DIRECTION FINDING 
SUPERRESOLUTION 
HIGH RESOLUTION 
BEERING ESTIMATION 
MAXIMUM LIKELIHOOD 
MUSIC 
NARROWBAND 
LINEAR ARRAY 
SIGNAL PROCESSING 

UNCLASSIFIED 

SECURITY CLASSIFICATION OF FORM 


